علائم یونانی.. بیست

پانویس ها بیست­و­یک

چکیده 1

فصل اول : مقدمه

1-1-مقدمه‌ای بر لوله ورتکس    2

1-2-برخی از کاربردهای لوله ورتکس    3

1-2-1-کاربردهای خنک ساز موضعی.. 4

1-2-2-کاربردهای گرما ساز موضعی.. 5

1-2-3-تجهیزات آزمایشگاهی لوله ورتکس… 6

1-2-4-تهویه مطبوع شخصی.. 6

1-3-نظریه‌های رایج در مورد لوله ورتکس    7

1-4-تحلیل نظری لوله ورتکس    7

1-4-1-تحلیل ترمودینامیکی سیستم لوله ورتکس… 7

1-4-1-1-قانون بقای جرم. 8

1-4-1-2-قانون اول ترمودینامیک… 8

1-4-1-3-قانون دوم ترمودینامیک… 9

1-4-2-راندمان‌های سیستم لوله ورتکس[2] 12

1-4-2-1-راندمان‌های گرمایی برای سیستم لوله ورتکس… 12

1-4-2-2-راندمان برای یک انبساط ایزنتروپیک کامل. 13

1-4-2-3-راندمان کارنو. 13

هشت
1-4-2-4-معیاری بر مبنای سیکل کارنو. 14

1-5-پژوهش پیش روی   14

فصل دوم : ادبیات تحقیق

2-1-مقدمه. 15

2-2-مطالعات تجربی   16

2-2-1-سیال عامل. 16

2-2-2-هندسه. 16

2-2-3-میدان جریان داخلی.. 20

2-2-3-1-آشکارسازی جریان. 20

2-2-3-2-توزیع‌های سرعت در داخل لوله ورتکس… 21

2-2-3-3-اثبات تجربی جریان گردشی ثانویه. 22

2-3-توسعه تئوری   25

2-3-1-انتقال حرارت اصطکاکی.. 25

2-4-مدل جریان صوتی در لوله ورتکس    27

2-5-مطالعات دینامیک سیالات محاسباتی.. 29

فصل سوم : معادلات حاکم

3-1-مقدمه. 33

3-2-تاریخچه CFD.. 34

3-3-کاربردهای CFD.. 34

3-4-معادلات ناویر استوکس    34

3-5-معادلات حاکم در بخش دینامیک سیالات محاسباتی.. 35

3-5-1-مدل ….. 36

3-5-2-مدل …… 40

3-5-3-مدل …………… 41

3-6-شرایط مرزی   43

فصل چهارم : نتایج

4-1-مقدمه. 44

4-2-بررسی تجربی   44

4-2-1-نتایج بررسی تجربی.. 47

4-2-2-اندازه‌گیری خطا 48

نه
4-2-3-منابع خطا 48

4-2-3-1-خطای شخص    48

4-2-3-2-خطای دستگاه 48

4-2-3-3-خطای منظم (سیستماتیک) 48

4-2-3-4-خطای کاتوره ای(نامنظم) 48

4-2-4-خطای مطلق. 48

4-2-4-1-عدم قطعیت و آنالیز خطا 48

4-3-شبیه‌سازی دینامیک سیالات محاسباتی.. 53

4-3-1-روش بکار گرفته‌شده 53

4-3-2-استفاده از نتایج تجربی.. 54

4-3-3-مدل دینامیک سیالات محاسباتی لوله ورتکس… 54

4-3-4-شرایط مرزی.. 59

4-3-4-1-ورودی نازل‌ها 59

4-3-4-2-خروجی سرد. 59

4-3-4-3-خروجی گرم. 59

4-3-5-مطالعه استقلال از شبکه. 60

4-3-6-انطباق شبکه. 62

4-3-7-نتایج عملکرد مدل های توربولانسی.. 63

4-3-7-1-کانتورهای دما 66

4-3-7-2-توزیع های سرعت مماسی  ،و محوری …. 72

4-3-7-3-کانتور چگالی.. 73

  برای دانلود متن کامل پایان نامه ها اینجا کلیک کنید

4-3-7-4-کانتورهای عدد ماخ. 74

4-3-7-5-نمایش خطوط جریان. 76

4-3-8-خطای شبیه سازی.. 79

4-3-9-نمودار باقیمانده 80

4-3-10-عملکرد شبکه با ساختار نامنظم. 82

فصل پنجم: نتیجه گیری و پیشنهادها

5-1-نتیجه‌گیری   85

5-2-پیشنهادها 86

پیوست… 88

ده
گسسته سازی معادلات CFD حاکم. 88

رویکرد حل در نرم‌افزار Ansys CFX 14.5. 91

فرایند انطباق شبکه[52] 92

روش‌شناسی CFD.. 94

ایجاد هندسه و شبکه. 94

تعریف فیزیک مدل. 94

حل مسئله. 94

باقیمانده‌ها 95

نمایش نتایج در پس پردازنده 95

مراجع.. 96

 
چکیده

لوله ورتکس یک وسیله ساده مکانیکی است که فاقد قسمت‌های متحرک بوده و یکی از تجهیزات مورد استفاده در سیستم تبرید می‌باشد، که در آن یک سیال پرفشار از طریق نازل‌های ورودی وارد لوله ورتکس شده و به دو جریان با دمای کمتر، و بیشتر از دمای ورودی منشعب می‌شود بدین صورت می‌توان دماهای تا 40- درجه سانتی‌گراد را ایجاد کرد. لوله ورتکس به عنوان خنک­ساز موضعی و گرماساز موضعی، دارای کاربرد وسیعی در صنعت می­باشد که از آن جمله می­توان به مواردی چون: خنک کردن قالب‌های تزریق پلاستیک، عملیات رطوبت­زدایی گاز، عملیات آب­بندی حرارتی، خنک کردن کابین کنترل محفظه­های الکتریکی خنک­سازی لنزهای دوربین عکاسی، تنظیمات چسب­ها و لحیم­ها و خشک کردن جوهر روی برچسب­ها و بطری­ها اشاره کرد. اگرچه با وجود اینکه تاکنون مطالعات تجربی زیادی بر روی عملکرد لوله ورتکس صورت گرفته است اما همچنان فهم فیزیکی جریان و مکانیزم پدیده جدایش دمای گاز یا بخار عبوری از آن به دلیل پیچیدگی جریان و ناسازگاری نتایج تجربی به طور کامل استنباط نشده است. در این پایان نامه با هدف ثبت دماهای سرد و گرم ناشی از پدیده جدایش دما بر حسب کسر سرد ابتدا به بررسی تجربی عملکرد یک نمونه از تجهیزات آزمایشگاهی لوله ورتکس با مدل 433R ساخت شرکت P.A.Hilton واقع در بریتانیا پرداخته شده است. نتایج بررسی تجربی شامل نمودارهای دمای استاتیک خروجی سرد و گرم برحسب کسر سرد و همچنین نمودار فشار خروجی سرد برحسب کسر سرد می­باشد. با بهره گرفتن از دمای استاتیک خروجی سرد و گرم نمودارهای ضرسب عملکرد گرماساز و سرماساز لوله ورتکس و همچنین راندمان آیزنتروپیک نیز با توجه به روابط موجود ارائه شده است. عدم قطعیت نتایج بررسی تجربی نیز با بهره گرفتن از رابطه تجربی هولمن محاسبه شده و به صورت میله خطا بر روی نمودارها رسم شده است. در ادامه با بهره گرفتن از روش های دینامیک سیالات محاسباتی موجود در نرم افزار ANSYS CFX14.5، شبیه سازی عددی جریان حالت دائم،تراکم پذیر و سه بعدی با ایجاد شبکه محاسباتی دارای ساختار منظم و شش­وجهی، برروی هندسه لوله ورتکس فوق الذکر و با بهره گرفتن از مدل های مغشوشی چون  استاندارد  و  انجام شده است. ضمن اینکه شرط مرزی ورودی و خروجی سرد اعمال شده، منطبق بر شرایط آزمایشگاهی می باشد در حالی­که در خروجی گرم از شرط مرزی مصنوعی استفاده شده است. مطالعه استقلال از شبکه نیز با تمرکز بر روی اختلاف دمای استاتیک خروجی گرم و سرد لوله ورتکس به انجام رسیده است. شرح و چگونگی انجام پدیده جدایش دما و الگوی جریان به عنوان هدف شبیه سازی انجام شده در این پایان نامه مطرح نمی باشد. در پایان نمودارهای دمای استاتیک خروجی سرد و گرم، ضریب عملکرد و راندمان آیزنتروپیک ناشی از نتایج شبیه سازی عددی با نتایج بررسی تجربی مقایسه شده است. ضمن اینکه نتایج شبیه­سازی عددی به صورت کانتورهای دمای استاتیک، دمای سکون، چگالی عدد ماخ توزیع­های سرعت و همچنین نمایش خطوط جریان با تمرکز بر روی موقعیت نقطه سکون و ناحیه شکل­ گیری جریان ثانویه نیز ارائه شده است.

  فصل اول
: مقدمه

1-1-     مقدمه‌ای بر لوله ورتکس

لوله ورتکس[1] که بعضاً با نام‌هایی چون لوله ورتکس رنک–هیلش یا لوله رنک-هیلش شناخته می‌شود اختراع مبتکرانه ایست که ایده آن توسط دو دانشمند فرانسوی و آلمانی به نام‌های جورجس جوزف رنک[2] و ردلف هیلش[3] به طور مستقل در خلال سال‌های جنگ جهانی دوم در اروپا مطرح شد[1].

لوله ورتکس یک وسیله ساده مکانیکی است که فاقد قسمت‌های متحرک بوده و یکی از تجهیزات مورد استفاده در سیستم تبرید می‌باشد، که در آن یک سیال پرفشار از طریق نازل‌های ورودی وارد لوله ورتکس شده و به دو جریان با دمای کمتر، و بیشتر از دمای ورودی منشعب می‌شود، (بدون هیچ‌گونه واکنش شیمیایی یا دخالت منبع خارجی انرژی ) بدین صورت می‌توان دماهای تا 40- درجه سانتی‌گراد را ایجاد کرد. لوله ورتکس شامل بخش‌هایی از قبیل یک یا چند نازل ورودی یک محفظه ورتکس[4] یک اوریفیس در انتهای سرد[5] شیر کنترل در انتهای گرم[6] و یک لوله می‌باشد (شکل1-1). وقتی سیال پرفشار بصورت مماس توسط نازل‌های ورودی به محفظه ورتکس تزریق می‌شود، یک جریان چرخشی در محفظه ورتکس ایجاد می‌شود. وقتی چرخش جریان سیال به سمت مرکز محفظه ورتکس ادامه پیدا می‌کند، سیال منبسط و سرد می‌شود. در محفظه ورتکس بخشی از سیال به سمت خروجی گرم می‌چرخد و بخش دیگر سیال مستقیماً در خروجی سرد موجود است. بخشی از گاز موجود در لوله ورتکس به خاطر مؤلفه محوری سرعت بر می‌گردد و از انتهای گرم به انتهای سرد حرکت می‌کند. در خروجی گرم سیال با دمای بیشتری خارج می‌شود درحالی‌که در خروجی سرد، سیال دمای کمتری در مقایسه با دمای ورودی دارد[2]. لوله ورتکس در مقایسه با دیگر وسایل موجود در سیکل تبرید مزایایی دارد از قبیل: سادگی، فقدان اجزای متحرک، عدم حضور جریان الکتریسیته، عدم انجام هیچ‌گونه واکنش شیمیایی، نگهداری آسان، تأمین فوری هوای سرد، پایداری عملکرد (به خاطر استفاده از فولاد ضد زنگ و محیط کار تمیز) و تنظیم دما. همچنین وابستگی به گاز فشرده و بازده گرمایی پایین ممکن است برخی از کاربردهای آن را محدود کند.

–     برخی از کاربردهای لوله ورتکس
اگرچه با وجود اینکه تا کنون اثبات قاطعانه‌ای در مورد حالت انتقال حرارت در داخل لوله ورتکس صورت نگرفته و علیرغم درک ناقص این پدیده،اخیراً لوله ورتکس، با کاربرد خنک سازهای موضعی در مقیاس‌های کوچک و بصورت تجاری توسعه زیادی یافته‌اند. امروزه تعداد قابل‌توجهی از شرکت‌های تولیدکننده وجود دارند که از تئوری لوله ورتکس بصورت کاربردی و موثر به عنوان یک راه حل در کاربردهای صنعتی بهره می‌گیرند. از جمله این شرکت‌ها می‌توان به Exair و ITW Vortec اشاره کرد که هر دو در ایالات‌متحده مشغول به فعالیت می‌باشند. این شرکت‌ها محصولات خود را بر اساس محدوده مختلفی از کاربردها و بر اساس کیفیت‌های زیر از فن آوری لوله ورتکس عرضه می‌کنند:

سرمایش پاک
نگهداری آسان –فقدان اجزای متحرک
دمای پایدار خروجی
سرمایش، بدون نیاز به الکتریسیته و مبرد
قابل‌اطمینان، فشرده و سبک‌وزن
قیمت ارزان
با وجود اینکه موارد زیادی برای کاربردهای لوله ورتکس، به عنوان خنک ساز و گرماساز موضعی وجود دارند (که در ادامه تشریح خواهد شد) اما همچنان نیز می‌توان ایده‌های مبتکرانه‌ای در مورد کاربردهای لوله ورتکس ارائه داد. در شکل (1-2) یک نمونه از مدل تجاری لوله ورتکس ساخت شرکت Exair نشان داده شده است.

1-2-1-    کاربردهای خنک ساز موضعی

لوله‌های ورتکس دارای محدوده وسیعی از کاربردهای خنک ساز موضعی در خطوط تولید ماشین‌آلات و فرآیندها می‌باشند. یک نمونه از آن تفنگ هوای سرد با اساس مغناطیسی می‌باشد که به عنوان جایگزین ماده خنک‌کننده در فرایندهای ماشین‌کاری مورد استفاده قرار می‌گیرد و در شکل (1-3) نشان داده شده است.

شکل ‏1‑3تفنگ هوای سرد ساخت ITW Vortec [3]

برخی دیگر از کاربردهای خنک ساز موضعی شامل موارد زیر می‌شود:

خنک کردن قالب‌های تزریق پلاستیک
عملیات رطوبت زدایی گاز
عملیات آب بندی حرارتی
خنک کردن کابین کنترل محفظه‌های الکتریکی، که در شکل‌های (1-4) و (1-5) توضیح داده شده است
خنک‌سازی لنزهای دوربین‌های عکاسی که در شکل (1-6) نشان داده شده است.
1-2-2-    کاربردهای گرما ساز موضعی

با بهره گرفتن از هوای گرم خروجی، برخی از کاربردهای گرمایش موضعی شامل موارد زیر می‌شود:

تنظیمات چسب‌ها و لحیم‌ها
خشک کردن جوهر روی برچسب‌ها و بطری‌ها
1-2-3-    تجهیزات آزمایشگاهی لوله ورتکس

تجهیزات آزمایشگاهی برای استفاده در آزمایشگاه ترمودینامیک و مکانیک سیالات به صورت آزمایشگاهی موجود است که توسط شرکت P.A.Hilton Ltd واقع در بریتانیا تولید می‌شود، که یک نمونه از آن در شکل (1-7) مشاهده می‌شود.

 
1-2-4-    تهویه مطبوع شخصی

لوله‌های ورتکس می‌توانند به صورت جلیقه هوا، همان طور که توسط شرکت ITW Vortec به فروش می‌رسند، به منظور توزیع هوای سرد یا گرم در قسمت بالاتنه بدن، مورد استفاده گیرند، که در شکل (1-8) نشان داده شده است.

شکل ‏1‑8:تهویه مطبوع شخصی ساخت ITW Vortec [5]

1-3-     نظریه‌های رایج در مورد لوله ورتکس

قدیمی‌ترین نظریه بکار رفته در مورد لوله ورتکس نخستین بار توسط هیلش پیشنهاد شد. وی پیشنهاد کرد که گرادیان‌های سرعت زاویه‌ای در راستای شعاعی منجر به ایجاد گشتاور اصطکاکی بین لایه‌های مختلف جریان در حال چرخش می‌شوند، که در نتیجه شاهد انتقال انرژی توسط کار برشی، از لایه‌های داخلی به سمت لایه‌های خارجی خواهیم بود. اگر چه این نظریه به صورت کامل حالت انتقال حرارت در داخل لوله را توصیف نمی‌کند.

به منظور تکمیل این نظریه، یک فرضیه از سوی آلبرن و همکاران [6-8] مطرح شد که حاکی از وجود یک میدان جریان ثانویه می‌باشد که در انتقال انرژی در داخل لوله ورتکس نقش دارد که در ادامه به تفصیل در مورد آن بحث خواهد شد.این فرضیه بیان می‌کند که یک میدان جریان سیال اولیه، شامل گردابه های داخلی و خارجی وجود دارد که طول لوله را پوشش می‌دهد، از سوی دیگر یک حلقه جریان ثانویه نیز وجود دارد که گرما را بین این دو جریان گردابی انتقال می‌دهد که به صورت مبرد در یک سیکل ترمودینامیکی باز عمل می‌کند. که در ادامه به ذکر جزئیات آن پرداخته خواهد شد.این نظریه همچنین توسط گائو و همکاران [9] نیز حمایت شد که بر اساس مشاهدات تجربی مطالعاتی در این زمینه به انجام رسانده بودند.

1-4-     تحلیل نظری لوله ورتکس

از سال 1930 تا کنون که مکانیزم جدایش انرژی در لوله ورتکس موجب سردرگمی محققان شده بود همچنان، نظریه روشنی که بتواند به طور کامل به تشریح این پدیده بپردازد، وجود نداشته است، در این بخش قوانین ترمودینامیکی در مورد سیستم لوله ورتکس بکار گرفته می‌شوند و روابط بین خواص گاز ورودی و خروجی از سیستم ارائه می‌شوند. همچنین راندمان‌های مربوط به سیستم لوله ورتکس نیز تعریف و تحلیل خواهند شد.

1-4-1-    تحلیل ترمودینامیکی سیستم لوله ورتکس

در ابتدا زمانی که تکنولوژی لوله ورتکس معرفی شد به نظر می‌رسید تخطی از قوانین ترمودینامیک صورت گرفته است. از آنجایی که در هر فرایند تبرید کار ورودی امری ضروری به حساب می‌آید، به نظر می‌رسید یک شار گرمایی داخلی،بدون انجام هیچ‌گونه کار ورودی در لوله ورتکس وجود دارد که برای رد این ادعا نزدیک به حدود یک قرن تلاش برای درک کامل عملیات درون لوله ورتکس صورت گرفته است.

با توجه به حجم کنترل نشان داده‌شده در شکل (1-9) به منظور تحلیل ترمودینامیکی سیستم لوله ورتکس، خواص گاز در دیواره‌ها ، ورودی و خروجی مدنظر می‌باشند و همچنین جزئیات مربوط به فرایندهای داخلی لحاظ نمی‌شوند. در این سیستم سه مرز باز با نام‌های in،c و h وجود دارند که به ترتیب نشان‌دهنده ورودی خروجی سرد و خروجی گرم می‌باشند و خواص گاز در این مرزها مشخص شده است.

 شکل ‏1‑9: حجم کنترل بصورت خطوط پر رنگ نشان داده‌شده در شکل می‌باشد

1-4-1-1- قانون بقای جرم

با اعمال فرضیاتی از قبیل جریان حالت پایا،تغییرات ناچیز انرژی پتانسیل در ورودی و خروجی و عدم تبادل هرگونه کار و حرارت خارجی به سیستم معادلات بقای جرم، قوانین اول و دوم ترمودینامیک برای حجم کنترل نشان داده‌شده در شکل بالا بصورت زیر نوشته می‌شود:

(1-1)
 
با معرفی نسبتی با عنوان “کسر سرد[7]” که معیاری برای اندازه دبی جریان‌های سرد و گرم خروجی در قیاس با جریان گاز ورودی می‌باشد، بصورت زیر:

(1-2)
 
رابطه (1-1) بصورت زیر خلاصه می‌شود:

(1-3)
 
1-4-1-2- قانون اول ترمودینامیک

با اعمال قانون اول برای مرزهای سیستم لوله ورتکس بصورت نشان داده‌شده در شکل (1-7) رابطه قانون اول را به فرم زیر خواهیم داشت:

(1-5)
 
 با توجه به فرضیات ذکرشده در قسمت 1-4-1-1 و با توجه به رابطه(1-2) و همچنین در نظر گرفتن ، داریم:

موضوعات: بدون موضوع
[جمعه 1398-07-12] [ 02:16:00 ق.ظ ]